Typical 3-Phase Wiring Diagrams and Equations

Definitions

<table>
<thead>
<tr>
<th>For Both Wye and Delta (Balanced Loads)</th>
<th>Wye and Delta Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_p = Phase Voltage</td>
<td>$W_{\text{DELTA}} = 3 W_{\text{WYE}}$</td>
</tr>
<tr>
<td>V_L = Line Voltage</td>
<td>$W_{\text{DELTA}} = \frac{2}{3} W_{\text{DELTA}}$</td>
</tr>
<tr>
<td>I_p = Phase Current</td>
<td>$W_{\text{WYE}} = \frac{1}{2} W_{\text{WYE}}$</td>
</tr>
<tr>
<td>I_L = Line Current</td>
<td></td>
</tr>
<tr>
<td>$R = R1 = R2 = R3 =$ Resistance of each branch</td>
<td></td>
</tr>
<tr>
<td>$W =$ Wattage</td>
<td></td>
</tr>
</tbody>
</table>
Equations

3-Phase Wye (Balanced Load)

\[V_p = V/\sqrt{3} \]
\[W_{WYE} = V/\sqrt{3}/R \]
\[W_{WYE} = 1.73 V/L \]

3-Phase Open Wye (No Neutral)

\[I_{PO} = I\sqrt{3} \]
\[V_{PO} = V/\sqrt{2} \]
\[W_{WYE} = V/\sqrt{3}/R \]
\[W_{WYE} = 2(V_{PO}^2/R) \]
\[W_{WYE} = V/LO \]

Equations For Wye Only

3-Phase Delta (Balanced Load)

\[I_p = I/\sqrt{3} \]
\[V_p = V/L \]
\[W_{DELTA} = 3(V_p^2)/R \]
\[W_{DELTA} = 1.73 V/L \]

3-Phase Open Delta

\[I_{PO1} = I_{PO2} \]
\[I_{PO3} = I_{PO1} \]
\[I_{LO1} = I_{LO2} \]
\[I_{LO3} = I_{LO1} \]

Equations For Delta Only

St. Louis
Richard Greene Company
10742 Kahlmeyer Drive
St Louis, MO 63132
(314) 423-8989

Kansas City
Richard Greene Company
8200 Marshall Drive
Lenexa, KS 66214
(913) 492-6886

INDUSTRIAL CONTROLS FOR FACTORY AUTOMATION
Since 1958